2,719 research outputs found

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    El Consulado de Cádiz y el Reglamento de Comercio Libre en 1765

    Get PDF
    Tomo I ; pág. 79-9

    Regional Perspectives Report Chapter 3: Ontario

    Get PDF

    Conservation Evaluation of Small-flowered Lipocarpha, Lipocarpha micrantha (Cyperaceae), in Canada

    Get PDF
    In Canada, Lipocarpha micrantha has been documented at eight locations in Quebec, Ontario, and British Columbia. Four of these populations have apparently been extirpated. The remaining populations, ranging from 120 to approximately 40000 plants, are all northern disjuncts from the main range of this species. Threats to these populations include water level regulation and shoreline development. Considering the threats to the habitat of Lipocarpha micrantha, and the small size of most of the remaining populations, it has been designated an Endangered species in Canada

    Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV

    Get PDF
    Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterise tuneable 3fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure

    Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis

    Get PDF
    Objective: To quantify the association between atrial fibrillation and cardiovascular disease, renal disease, and death. Design: Systematic review and meta-analysis. Data sources: Medline and Embase. Eligibility criteria: Cohort studies examining the association between atrial fibrillation and cardiovascular disease, renal disease, and death. Two reviewers independently extracted study characteristics and the relative risk of outcomes associated with atrial fibrillation: specifically, all cause mortality, cardiovascular mortality, major cardiovascular events, any stroke, ischaemic stroke, haemorrhagic stroke, ischaemic heart disease, sudden cardiac death, congestive heart failure, chronic kidney disease, and peripheral arterial disease. Estimates were pooled with inverse variance weighted random effects meta-analysis. Results: 104 eligible cohort studies involving 9 686 513 participants (587 867 with atrial fibrillation) were identified. Atrial fibrillation was associated with an increased risk of all cause mortality (relative risk 1.46, 95% confidence interval 1.39 to 1.54), cardiovascular mortality (2.03, 1.79 to 2.30), major cardiovascular events (1.96, 1.53 to 2.51), stroke (2.42, 2.17 to 2.71), ischaemic stroke (2.33, 1.84 to 2.94), ischaemic heart disease (1.61, 1.38 to 1.87), sudden cardiac death (1.88, 1.36 to 2.60), heart failure (4.99, 3.04 to 8.22), chronic kidney disease (1.64, 1.41 to 1.91), and peripheral arterial disease (1.31, 1.19 to 1.45) but not haemorrhagic stroke (2.00, 0.67 to 5.96). Among the outcomes examined, the highest absolute risk increase was for heart failure. Associations between atrial fibrillation and included outcomes were broadly consistent across subgroups and in sensitivity analyses. Conclusions: Atrial fibrillation is associated with an increased risk of death and an increased risk of cardiovascular and renal disease. Interventions aimed at reducing outcomes beyond stroke are warranted in patients with atrial fibrillation

    The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration

    Full text link
    Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror (DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, US

    Association between trial registration and positive study findings: cross sectional study (Epidemiological Study of Randomized Trials—ESORT)

    Get PDF
    Objective To assess whether randomised controlled trials (RCTs) that were registered were less likely to report positive study findings compared with RCTs that were not registered and whether the association varied by funding source. Design Cross sectional study. Study sample All primary RCTs published in December 2012 and indexed in PubMed by November 2013. Trial registration was determined based on the report of a trial registration number in published RCTs or the identification of the trial in a search of trial registries. Trials were separated into prospectively and retrospectively registered studies. Main outcome measure Association between trial registration and positive study findings. Results 1122 eligible RCTs were identified, of which 593 (52.9%) were registered and 529 (47.1%) were not registered. Overall, registration was marginally associated with positive study findings (adjusted risk ratio 0.87, 95% confidence interval 0.78 to 0.98), even with stratification as prospectively and retrospectively registered trials (0.87, 0.74 to 1.03 and 0.88, 0.78 to 1.00, respectively). The interaction term between overall registration and funding source was marginally statistically significant and relative risk estimates were imprecise (0.75, 0.63 to 0.89 for non-industry funded and 1.03, 0.79 to 1.36 for industry funded, P interaction=0.046). Furthermore, a statistically significant interaction was not maintained in sensitivity analyses. Within each stratum of funding source, relative risk estimates were also imprecise for the association between positive study findings and prospective and retrospective registration. Conclusion Among published RCTs, there was little evidence of a difference in positive study findings between registered and non-registered clinical trials, even with stratification by timing of registration. Relative risk estimates were imprecise in subgroups of non-industry and industry funded trials

    A rugged, self-sterilizing antimicrobial copper coating on ultra-high molecular weight polyethylene: A preliminary study on the feasibility of an antimicrobial prosthetic joint material

    Get PDF
    We report here for the first time how the combination of a precursor solution and low temperature (170 °C) aerosol assisted chemical vapour deposition were used to bond a copper coating to ultra-high molecular weight polyethylene (UHMWPE) and promote robustness. This metallic thin film remained intact on the UHMWPE substrate after the Scotch tape test and showed notable wear-resistance after 10 cycles of sand paper-abrasion. Antimicrobial assays against both Escherichia coli and Staphylococcus aureus revealed potent dark bactericidal activity with 99.999% reduction in bacterial number within 15 minutes. These results suggest that the modified UHMWPE could be a potential candidate for antimicrobial plastics and in the long term may find application in prosthetic joint applications
    corecore